dsp:z_xfer
Differences
This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
| dsp:z_xfer [2013/05/07 16:54] – created randy | dsp:z_xfer [2022/09/01 13:44] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 2: | Line 2: | ||
| ===== Opgave 4.13 ===== | ===== Opgave 4.13 ===== | ||
| + | |||
| + | a) Complete onderdrukking bij $$ \Omega = 0 $$ | ||
| + | |||
| + | Dus een nulpunt precies op de cirkelrand: | ||
| $$ | $$ | ||
| - | H(z) = \frac{ (z-1) (z-e^{j\frac{\pi}{3}}) (z-e^{-j\frac{\pi}{3}}) | + | \begin{split} |
| + | z & | ||
| + | & | ||
| + | &= 1 | ||
| + | \end{split} | ||
| $$ | $$ | ||
| + | |||
| + | b) Complete onderdrukking bij $$ \Omega = \frac{\pi}{3} $$ | ||
| + | |||
| + | Hieruit volgt: | ||
| + | |||
| + | $$ | ||
| + | \begin{split} | ||
| + | z &= e^{j\frac{\pi}{3}} \\ | ||
| + | &= \cos{\frac{\pi}{3}} + j \sin{\frac{\pi}{3}} \\ | ||
| + | &= \frac{1}{2} + j \frac{1}{2} \sqrt{3} | ||
| + | \end{split} | ||
| + | $$ | ||
| + | |||
| + | c) Een nauwe doorlaatband bij $$ \Omega = \frac{2\pi}{3} $$ als gevolg van polen in het z-vlak met straal r=0.9. | ||
| + | |||
| + | d) Geen overbodige vertraging in het uitgangssignaal. | ||
| + | |||
| + | Voor de nulpunten / polen is er altijd een complex geconjugeerde, | ||
| + | |||
| + | * Oranje volgt uit vraag A | ||
| + | * Groen volgt uit vraag B | ||
| + | * Rood volgt uit vraag D | ||
| + | * Groen volgt uit vraag C | ||
| + | |||
| + | $$ | ||
| + | H(z) = \frac{ | ||
| + | $$ | ||
| + | |||
| + | Nu uitwerken: | ||
| + | |||
| + | Stap: ? | ||
| + | |||
| + | |||
| + | $$ | ||
| + | \frac | ||
| + | {z \cdot (z^{2} - (2 \cdot 0.9 \cdot z \cdot \cos{\frac{2 \pi}{3}}) + 0.9^{2} )} | ||
| + | $$ | ||
| + | |||
| + | |||
| + | UItwerken: | ||
| + | |||
| + | $$ | ||
| + | \frac {(z-1) \cdot (z^{2} - z+1)} | ||
| + | {z \cdot z^{2} + 0.9z + 0.81} | ||
| + | $$ | ||
| + | |||
| + | Uitwerken?: | ||
| + | |||
| + | $$ | ||
| + | \frac {z^{3} - z^{2} + z - z^{2} + z - 1} | ||
| + | {z^{3} + 0.9 z^{2} + 0.81z} | ||
| + | $$ | ||
| + | |||
| + | Pak hoogste macht (z3) | ||
| + | |||
| + | $$ | ||
| + | \frac {z^{3} - 2z^{2} + 2z-1} | ||
| + | {z^{3} + 0.9z^{2} + 0.81z} | ||
| + | $$ | ||
| + | |||
| + | Breuk delen door z3 | ||
| + | |||
| + | $$ | ||
| + | \frac {1 - 2z^{-1} + 2z^{-2} - z^{-3}} | ||
| + | {1 + 0.9 z^{-1} + 0.81 z^{-2}} | ||
| + | $$ | ||
| + | |||
| + | Is nu de overdracht: | ||
| + | |||
| + | $$ | ||
| + | H(z) = \frac {y(z)}{x(z)} | ||
| + | $$ | ||
| + | |||
| + | Stap?: | ||
| + | |||
| + | $$ | ||
| + | y(z)(1+0.9 \cdot z^{-1} + 0.81 z^{-2} ) = x(z)(1-2z^{-1} + 2z^{-2} - z^{-3} ) | ||
| + | $$ | ||
| + | |||
| + | Stap (naar tijddomein? | ||
| + | |||
| + | $$ | ||
| + | \begin{split} | ||
| + | y[n] &= -0.9 \cdot y[n-1] - 0.81 y[n-1] \\ | ||
| + | y[n] &= x[n] - 2x[n-1] + 2x[n-1] | ||
| + | \end{split} | ||
| + | $$ | ||
| + | |||
| + | |||
| + | |||
dsp/z_xfer.1367938440.txt.gz · Last modified: 2022/09/01 13:36 (external edit)