User Tools

Site Tools


jancraats:hoofdstuk_20

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
jancraats:hoofdstuk_20 [2012/09/23 13:17] – [20.6] jerryjancraats:hoofdstuk_20 [2022/09/01 11:44] (current) – external edit 127.0.0.1
Line 1: Line 1:
-  * Let op de **\rightarrow** (latex-opmaak) bij differentieren, gebruik geen gelijk-aan teken. Functies zijn niet gelijk aan elkaar, ze worden getransformeerd.+<note tip> 
 +Let op de **\rightarrow** (latex-opmaak) bij differentieren, gebruik geen gelijk-aan teken. Functies zijn niet gelijk aan elkaar, ze worden getransformeerd. 
 +</note>
  
-====== 20.1 ====== +  [[jancraats/hoofdstuk_20/pagina_176 | Pagina 176 Opgaves van 20.1 tot 20.9]] 
- +  * [[jancraats/hoofdstuk_20/pagina_178 | Pagina 178 Opgaves van 20.10 tot 20.18]] 
-**a** +  [[jancraats/hoofdstuk_20/pagina_180 | Pagina 180 - Opgaves van 20.19 tot 20.31]]
- +
-$$ +
-\begin{split}  +
-2x-3 &\rightarrow 2x^{1} \\ +
-&\rightarrow 2 +
-\end{split} +
-$$ +
- +
-**b** +
- +
-$$ +
-\text{Constant value not able to differentatie goes to 0} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split}  +
-4x^{2}+1 &\rightarrow 4x^{2-1} \\ +
-&\rightarrow 2\cdot4x^1 \\ +
-&\rightarrow 8x +
-\end{split} +
-$$ +
- +
-**d** +
- +
-$$ +
-\begin{split}  +
-10x^7 &\rightarrow 10x^{7-1} \\ +
-&\rightarrow 7 \cdot 10x^6 \\ +
-&\rightarrow 70x^6 +
-\end{split} +
-$$ +
- +
-**e** +
- +
-$$ +
-\begin{split}  +
-4x + x^3 &\rightarrow 4 + 3x^2 +
-\end{split} +
-$$ +
- +
-====== 20.2 ====== +
- +
-**a** +
- +
-$$ +
-\begin{split}  +
-x^3 - 3 &\rightarrow 3x^{3-1} \\ +
-&\rightarrow 3x^2 +
-\end{split} +
-$$ +
- +
-**b** +
- +
-$$ +
-\begin{split}  +
-x^2 - 2x + 1 &\rightarrow 2x^{2-1}-2 \\ +
-&\rightarrow 2x - 2 +
-\end{split} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split}  +
-x^4 - 3x^3 + 2 &\rightarrow x^4 - 3x^3 \\ +
-&\rightarrow 4x^3 - 3 \cdot 3x^2 \\ +
-&\rightarrow 4x^3 - 9x^2 +
-\end{split} +
-$$ +
- +
-**d** +
- +
-$$ +
-\begin{split}  +
-8x^8 &\rightarrow 8 \cdot 8x^{8-1} \\ +
-&\rightarrow 64x^7 +
-\end{split} +
-$$ +
- +
-**e** +
- +
-$$ +
-\begin{split}  +
-x^6 - 6x^4 &\rightarrow 6x^{6-1} - 4 \cdot 6x^{4-1} \\ +
-&\rightarrow 6x^5 - 24^3 +
-\end{split} +
-$$ +
- +
-===== 20.3 ===== +
- +
-**a** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**b** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**d** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**e** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
- +
-===== 20.4 ===== +
- +
-**a** +
- +
-$$ +
-\begin{split}  +
-\sqrt{x} &\rightarrow x^{\frac{1}{2}} \\ +
-&\rightarrow \frac{1}{2}x^{-\frac{1}{2}} +
-\end{split} +
-$$ +
- +
-**b** +
- +
-$$ +
-\begin{split}  +
-x\sqrt{x} &\rightarrow x^1 \cdot x^{\frac{1}{2}} \\ +
-&\rightarrow x^{\frac{2}{2}} \cdot x^{\frac{1}{2}} \\ +
-&\rightarrow x^{\frac{3}{2}} \\ +
-&\rightarrow \frac{3}{2} \cdot x^{\frac{3}{2}-1} \\ +
-&\rightarrow  \frac{3}{2} x^{\frac{1}{2}} +
-\end{split} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split} +
- +
-\sqrt{x^3} &\rightarrow (x^3)^{\frac{1}{2}} \\ +
-&\rightarrow x^{\frac{3}{1} \cdot \frac{1}{2}} \\ +
-&\rightarrow \frac{3}{2} x^{ \frac{3}{2} 1} \\ +
-&\rightarrow \frac{3}{2} x^{ \frac{1}{2} } +
- +
-\end{split} +
-$$ +
- +
-**d** +
- +
-$$ +
-\begin{split} +
- +
-x^2 \sqrt{x} &\rightarrow x^2 \cdot x^{ \frac{1}{2} } \\ +
-&\rightarrow  +
- +
-\end{split} +
-$$ +
- +
-**e** +
- +
-===== 20.5 ===== +
- +
-**a** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**b** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**d** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**e** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-===== 20.6 ===== +
- +
-**a** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**b** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**d** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**e** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-===== 20.7 ===== +
- +
-**a** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**b** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**d** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**e** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-===== 20.8 ===== +
- +
-**a** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**b** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**d** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**e** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-===== 20.9 ===== +
- +
-**a** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**b** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**d** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-**e** +
- +
-$$ +
-\begin{split}  +
- +
- +
-\end{split} +
-$$ +
- +
-====== 20.14 ====== +
- +
-**a** +
- +
-$$ +
-\begin{split}  +
-\sqrt{x+1} \cdot \ln x& \rightarrow (x + 1)^{\frac{1}{2}} \cdot \ln x &+ \sqrt{x+1} \frac{1}{x} \\ +
-& \rightarrow \frac{1}{2} \cdot (x+1)^{-\frac{1}{2}} \cdot \ln x &+ \frac{\sqrt{x+1} \cdot 1}{x} \\ +
-& \rightarrow \frac{1}{2} \cdot \frac{1}{(x+1)^\frac{1}{2}} \cdot \ln x &+ \frac{\sqrt{x+1}}{x} \\ +
-& \rightarrow \frac{1}{2(x+1)^\frac{1}{2}} \cdot \frac{\ln x }{1} &+ \frac{\sqrt{x+1}}{x} \\ +
-& \rightarrow \frac{\ln x}{2 \sqrt{(x+1)}} &+ \frac{\sqrt{x+1}}{x} +
-\end{split} +
-$$ +
- +
-**c** +
- +
-$$ +
-\begin{split}  +
-x \ln \sqrt[3]{x} &  \rightarrow 1 x^0 \cdot \ln \sqrt[3]{x} &+ x \cdot \frac{1}{ \sqrt[3]{x} } \\ +
-& \rightarrow 1 \cdot \ln \sqrt[3]{x} &+ x \cdot \frac{1}{ x^\frac{1}{3} } \\ +
-& \rightarrow \ln \sqrt[3]{x} &+ x \cdot x^{-\frac{1}{3}} \\ +
-& \rightarrow \ln \sqrt[3]{x} &+ x^1 \cdot x^{-\frac{1}{3}} \\ +
-& \rightarrow \ln \sqrt[3]{x} &+ x^1 \cdot x^{-\frac{1}{3}}  +
-\end{split} +
-$$ +
- +
-Deze is nog niet correct, antwoord moet zijn: +
- +
-$ \ln \sqrt[3]{x} + \frac{1}{3} $+
jancraats/hoofdstuk_20.1348406277.txt.gz · Last modified: 2022/09/01 11:36 (external edit)