jancraats:hoofdstuk_20
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| jancraats:hoofdstuk_20 [2012/09/23 16:50] – randy | jancraats:hoofdstuk_20 [2022/09/01 13:44] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | * Let op de **\rightarrow** (latex-opmaak) bij differentieren, | + | <note tip> |
| + | Let op de **\rightarrow** (latex-opmaak) bij differentieren, | ||
| + | </ | ||
| - | ====== 20.1 ====== | + | |
| - | + | * [[jancraats/ | |
| - | **a** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | 2x-3 & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **b** | + | |
| - | + | ||
| - | $$ | + | |
| - | \text{Constant value not able to differentatie goes to 0} | + | |
| - | $$ | + | |
| - | + | ||
| - | **c** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | 4x^{2}+1 & | + | |
| - | & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **d** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | 10x^7 & | + | |
| - | & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **e** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | 4x + x^3 & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | ====== | + | |
| - | + | ||
| - | **a** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | x^3 - 3 & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **b** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | x^2 - 2x + 1 & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **c** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | x^4 - 3x^3 + 2 & | + | |
| - | & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **d** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | 8x^8 & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **e** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | x^6 - 6x^4 & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | ====== | + | |
| - | + | ||
| - | **a** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | & 4x^4 -3x^2 + 2 \\ | + | |
| - | & 16x^3 -6x | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **e** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | x^2 -5x^3 +1 \\ | + | |
| - | 2x -15x^2 +1 | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | ====== 20.4 ====== | + | |
| - | + | ||
| - | **a** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | \sqrt{x} & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **b** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | x\sqrt{x} & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **c** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | \sqrt{x^3} & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **d** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | x^2 \sqrt{x} & | + | |
| - | & | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **e** | + | |
| - | + | ||
| - | ====== 20.5 ====== | + | |
| - | + | ||
| - | **a** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | \sqrt[3]{x} \\ | + | |
| - | x^{\frac{1}{3}} \\ | + | |
| - | \frac{1}{2} x ^ {-\frac{2}{3}} | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **e** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | x^2 \sqrt[5]{x^2} \\ | + | |
| - | x^2 x ^ {\frac{2}{5}} \\ | + | |
| - | x^ {\frac{12}{5}} \\ | + | |
| - | \frac{12}{5} x ^ {\frac{7}{5}} | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | ====== | + | |
| - | + | ||
| - | **a** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | \sqrt[7]{x^2} \\ | + | |
| - | x ^ {\frac{2}{7}} \\ | + | |
| - | \frac{2}{7} \\ | + | |
| - | \frac{2}{7} x ^ {-\frac{5}{7}} | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **b** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | \sqrt{3x^3} \\ | + | |
| - | 3^{\frac{1}{2}} \cdot (x3)^{\frac{1}{2}} \\ | + | |
| - | 3^{\frac{1}{2}} \cdot x^{\frac{3}{2}} \\ | + | |
| - | \frac{3}{2} \sqrt{3} x ^ {\frac{1}{2}} | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | ====== | + | |
| - | + | ||
| - | **a** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | \frac{1}{x} & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **b** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | \frac{3}{2x} & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | + | ||
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **c** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | \frac{5}{x^5} & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **d** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | \frac{ \sqrt{x} }{ x } & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | & | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | + | ||
| - | **e** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | \frac{1}{x\sqrt[3]{x}} \\ | + | |
| - | 1 \cdot \frac{1}{ (x \sqrt[3]{x}) ^ 1 } \\ | + | |
| - | 1 \cdot (x \sqrt[3]{x}) ^ {-1} \\ | + | |
| - | 1 \cdot x^{-1} \cdot \sqrt[3]{x} ^ {-1} \\ | + | |
| - | x^{-1} \cdot (x^{\frac{1}{3}}) ^ {-1} \\ | + | |
| - | x^{-1} \cdot x^{-\frac{1}{3}} \\ | + | |
| - | x^{-\frac{4}{3}} \\ | + | |
| - | -\frac{4}{3} x^{-\frac{7}{3}} | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | ===== 20.10 ===== | + | |
| - | + | ||
| - | **e** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | (x - x^4) ^ {-2} \\ | + | |
| - | -2 (x - x^4) ^ {-3} \cdot 1 - 4 x^3 \\ | + | |
| - | -2(x - x^4) ^ {-3} | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | Behalve de kettingregel gebruik je ook de somregel! | + | |
| - | + | ||
| - | ===== 20.13 ===== | + | |
| - | + | ||
| - | **b** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | + | ||
| - | x \cos(2x) \\ | + | |
| - | \cos (2x) &+ x - \sin(2x) \cdot 2 \\ | + | |
| - | \cos (2x) &- 2x \sin(2x) | + | |
| - | + | ||
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | Behalve de productregel gebruik je hierbij ook de kettingregel! | + | |
| - | + | ||
| - | + | ||
| - | ====== 20.14 ====== | + | |
| - | + | ||
| - | **a** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | \sqrt{x+1} \cdot \ln x& \rightarrow (x + 1)^{\frac{1}{2}} \cdot \ln x &+ \sqrt{x+1} \frac{1}{x} \\ | + | |
| - | & \rightarrow \frac{1}{2} \cdot (x+1)^{-\frac{1}{2}} \cdot \ln x &+ \frac{\sqrt{x+1} \cdot 1}{x} \\ | + | |
| - | & \rightarrow \frac{1}{2} \cdot \frac{1}{(x+1)^\frac{1}{2}} \cdot \ln x &+ \frac{\sqrt{x+1}}{x} \\ | + | |
| - | & \rightarrow \frac{1}{2(x+1)^\frac{1}{2}} \cdot \frac{\ln x }{1} &+ \frac{\sqrt{x+1}}{x} \\ | + | |
| - | & \rightarrow \frac{\ln x}{2 \sqrt{(x+1)}} &+ \frac{\sqrt{x+1}}{x} | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | **c** | + | |
| - | + | ||
| - | $$ | + | |
| - | \begin{split} | + | |
| - | x \ln \sqrt[3]{x} & \rightarrow 1 x^0 \cdot \ln \sqrt[3]{x} &+ x \cdot \frac{1}{ \sqrt[3]{x} } \\ | + | |
| - | & \rightarrow 1 \cdot \ln \sqrt[3]{x} &+ x \cdot \frac{1}{ x^\frac{1}{3} } \\ | + | |
| - | & \rightarrow \ln \sqrt[3]{x} &+ x \cdot x^{-\frac{1}{3}} \\ | + | |
| - | & \rightarrow \ln \sqrt[3]{x} &+ x^1 \cdot x^{-\frac{1}{3}} \\ | + | |
| - | & \rightarrow \ln \sqrt[3]{x} &+ x^1 \cdot x^{-\frac{1}{3}} | + | |
| - | \end{split} | + | |
| - | $$ | + | |
| - | + | ||
| - | Deze is nog niet correct, antwoord moet zijn: | + | |
| - | + | ||
| - | $ \ln \sqrt[3]{x} + \frac{1}{3} $ | + | |
jancraats/hoofdstuk_20.1348411859.txt.gz · Last modified: 2022/09/01 13:36 (external edit)