jancraats:hoofdstuk_20
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
jancraats:hoofdstuk_20 [2012/10/01 18:19] – [20.12] jerry | jancraats:hoofdstuk_20 [2022/09/01 11:44] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | * Let op de **\rightarrow** (latex-opmaak) bij differentieren, | + | <note tip> |
+ | Let op de **\rightarrow** (latex-opmaak) bij differentieren, | ||
+ | </ | ||
- | ====== 20.1 ====== | + | |
- | + | | |
- | **a** | + | * [[jancraats/ |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | 2x-3 & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \text{Constant value not able to differentatie goes to 0} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | 4x^{2}+1 & | + | |
- | & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **d** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | 10x^7 & | + | |
- | & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | 4x + x^3 & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | ====== 20.2 ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | x^3 - 3 & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | x^2 - 2x + 1 & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | x^4 - 3x^3 + 2 & | + | |
- | & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **d** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | 8x^8 & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | x^6 - 6x^4 & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | ====== 20.3 ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | & 4x^4 -3x^2 + 2 \\ | + | |
- | & 16x^3 -6x | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | x^2 -5x^3 +1 \\ | + | |
- | 2x -15x^2 +1 | + | |
- | \end{split} | + | |
- | $$ | + | |
- | ====== 20.4 ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | \sqrt{x} & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | x\sqrt{x} & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | \sqrt{x^3} & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **d** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | x^2 \sqrt{x} & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | ====== 20.5 ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | \sqrt[3]{x} \\ | + | |
- | x^{\frac{1}{3}} \\ | + | |
- | \frac{1}{2} x ^ {-\frac{2}{3}} | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | x^2 \sqrt[5]{x^2} \\ | + | |
- | x^2 x ^ {\frac{2}{5}} \\ | + | |
- | x^ {\frac{12}{5}} \\ | + | |
- | \frac{12}{5} x ^ {\frac{7}{5}} | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | \sqrt[7]{x^2} \\ | + | |
- | x ^ {\frac{2}{7}} \\ | + | |
- | \frac{2}{7} \\ | + | |
- | \frac{2}{7} x ^ {-\frac{5}{7}} | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | \sqrt{3x^3} \\ | + | |
- | 3^{\frac{1}{2}} \cdot (x3)^{\frac{1}{2}} \\ | + | |
- | 3^{\frac{1}{2}} \cdot x^{\frac{3}{2}} \\ | + | |
- | \frac{3}{2} \sqrt{3} x ^ {\frac{1}{2}} | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | \frac{1}{x} & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | \frac{3}{2x} & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | + | ||
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | \frac{5}{x^5} & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **d** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | \frac{ \sqrt{x} }{ x } & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | & | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | \frac{1}{x\sqrt[3]{x}} \\ | + | |
- | 1 \cdot \frac{1}{ (x \sqrt[3]{x}) ^ 1 } \\ | + | |
- | 1 \cdot (x \sqrt[3]{x}) ^ {-1} \\ | + | |
- | 1 \cdot x^{-1} \cdot \sqrt[3]{x} ^ {-1} \\ | + | |
- | x^{-1} \cdot (x^{\frac{1}{3}}) ^ {-1} \\ | + | |
- | x^{-1} \cdot x^{-\frac{1}{3}} \\ | + | |
- | x^{-\frac{4}{3}} \\ | + | |
- | -\frac{4}{3} x^{-\frac{7}{3}} | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | ====== | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | (x - x^4) ^ {-2} \\ | + | |
- | -2 (x - x^4) ^ {-3} \cdot 1 - 4 x^3 \\ | + | |
- | -2(x - x^4) ^ {-3} | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | Behalve de kettingregel gebruik je ook de somregel! | + | |
- | + | ||
- | ===== 20.11 ===== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((2x-3)^5)' | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((x^2 + 5)^{-1})' | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((\sqrt{3x - 4}))' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **d** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((\sqrt{x^2 + x}))' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((x + 4x^3)^{-3})' | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | ===== 20.12 ===== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | (\sqrt{ 1 + x + x^2 })' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | (\sqrt[3]{ 1 + x + x^2 })' & | + | |
- | & | + | |
- | + | ||
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ( ( x^2 - 1 )^4 )' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **d** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | (\sqrt{ x^3 + 1 })' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((x^2 + x)^{ \frac{3}{2} })' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | ====== | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | x \cos(2x) \\ | + | |
- | \cos (2x) &+ x - \sin(2x) \cdot 2 \\ | + | |
- | \cos (2x) &- 2x \sin(2x) | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | Behalve de productregel gebruik je hierbij ook de kettingregel! | + | |
- | + | ||
- | + | ||
- | ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | \sqrt{x+1} \cdot \ln x& \rightarrow (x + 1)^{\frac{1}{2}} \cdot \ln x &+ \sqrt{x+1} \frac{1}{x} \\ | + | |
- | & \rightarrow \frac{1}{2} \cdot (x+1)^{-\frac{1}{2}} \cdot \ln x &+ \frac{\sqrt{x+1} \cdot 1}{x} \\ | + | |
- | & \rightarrow \frac{1}{2} \cdot \frac{1}{(x+1)^\frac{1}{2}} \cdot \ln x &+ \frac{\sqrt{x+1}}{x} \\ | + | |
- | & \rightarrow \frac{1}{2(x+1)^\frac{1}{2}} \cdot \frac{\ln x }{1} &+ \frac{\sqrt{x+1}}{x} \\ | + | |
- | & \rightarrow \frac{\ln x}{2 \sqrt{(x+1)}} &+ \frac{\sqrt{x+1}}{x} | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | x \ln \sqrt[3]{x} & \rightarrow 1 x^0 \cdot \ln \sqrt[3]{x} &+ x \cdot \frac{1}{ \sqrt[3]{x} } \\ | + | |
- | & \rightarrow 1 \cdot \ln \sqrt[3]{x} &+ x \cdot \frac{1}{ x^\frac{1}{3} } \\ | + | |
- | & \rightarrow \ln \sqrt[3]{x} &+ x \cdot x^{-\frac{1}{3}} \\ | + | |
- | & \rightarrow \ln \sqrt[3]{x} &+ x^1 \cdot x^{-\frac{1}{3}} \\ | + | |
- | & \rightarrow \ln \sqrt[3]{x} &+ x^1 \cdot x^{-\frac{1}{3}} | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | Deze is nog niet correct, antwoord moet zijn: | + | |
- | + | ||
- | $ \ln \sqrt[3]{x} + \frac{1}{3} $ | + |
jancraats/hoofdstuk_20.1349115591.txt.gz · Last modified: 2022/09/01 11:36 (external edit)