jancraats:hoofdstuk_20
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
jancraats:hoofdstuk_20 [2012/10/05 12:13] – jerry | jancraats:hoofdstuk_20 [2022/09/01 11:44] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | [[jancraats/ | + | <note tip> |
+ | Let op de **\rightarrow** (latex-opmaak) bij differentieren, | ||
+ | </ | ||
- | ====== 20.10 ====== | + | |
- | + | * [[jancraats/ | |
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | (x - x^4) ^ {-2} \\ | + | |
- | -2 (x - x^4) ^ {-3} \cdot 1 - 4 x^3 \\ | + | |
- | -2(x - x^4) ^ {-3} | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | Behalve de kettingregel gebruik je ook de somregel! | + | |
- | + | ||
- | ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((2x-3)^5)' | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((x^2 + 5)^{-1})' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((\sqrt{3x - 4}))' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **d** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((\sqrt{x^2 + x}))' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((x + 4x^3)^{-3})' | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | (\sqrt{ 1 + x + x^2 })' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | (\sqrt[3]{ 1 + x + x^2 })' & | + | |
- | & | + | |
- | + | ||
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ( ( x^2 - 1 )^4 )' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **d** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | (\sqrt{ x^3 + 1 })' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **e** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | ((x^2 + x)^{ \frac{3}{2} })' & | + | |
- | & | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | ====== | + | |
- | + | ||
- | **b** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | + | ||
- | x \cos(2x) \\ | + | |
- | \cos (2x) &+ x - \sin(2x) \cdot 2 \\ | + | |
- | \cos (2x) &- 2x \sin(2x) | + | |
- | + | ||
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | Behalve de productregel gebruik je hierbij ook de kettingregel! | + | |
- | + | ||
- | + | ||
- | ====== | + | |
- | + | ||
- | **a** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | \sqrt{x+1} \cdot \ln x& \rightarrow (x + 1)^{\frac{1}{2}} \cdot \ln x &+ \sqrt{x+1} \frac{1}{x} \\ | + | |
- | & \rightarrow \frac{1}{2} \cdot (x+1)^{-\frac{1}{2}} \cdot \ln x &+ \frac{\sqrt{x+1} \cdot 1}{x} \\ | + | |
- | & \rightarrow \frac{1}{2} \cdot \frac{1}{(x+1)^\frac{1}{2}} \cdot \ln x &+ \frac{\sqrt{x+1}}{x} \\ | + | |
- | & \rightarrow \frac{1}{2(x+1)^\frac{1}{2}} \cdot \frac{\ln x }{1} &+ \frac{\sqrt{x+1}}{x} \\ | + | |
- | & \rightarrow \frac{\ln x}{2 \sqrt{(x+1)}} &+ \frac{\sqrt{x+1}}{x} | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | **c** | + | |
- | + | ||
- | $$ | + | |
- | \begin{split} | + | |
- | x \ln \sqrt[3]{x} & \rightarrow 1 x^0 \cdot \ln \sqrt[3]{x} &+ x \cdot \frac{1}{ \sqrt[3]{x} } \\ | + | |
- | & \rightarrow 1 \cdot \ln \sqrt[3]{x} &+ x \cdot \frac{1}{ x^\frac{1}{3} } \\ | + | |
- | & \rightarrow \ln \sqrt[3]{x} &+ x \cdot x^{-\frac{1}{3}} \\ | + | |
- | & \rightarrow \ln \sqrt[3]{x} &+ x^1 \cdot x^{-\frac{1}{3}} \\ | + | |
- | & \rightarrow \ln \sqrt[3]{x} &+ x^1 \cdot x^{-\frac{1}{3}} | + | |
- | \end{split} | + | |
- | $$ | + | |
- | + | ||
- | Deze is nog niet correct, antwoord moet zijn: | + | |
- | + | ||
- | $ \ln \sqrt[3]{x} + \frac{1}{3} $ | + |
jancraats/hoofdstuk_20.1349439200.txt.gz · Last modified: 2022/09/01 11:36 (external edit)