User Tools

Site Tools


playground

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
playground [2012/05/31 08:02] randyplayground [2022/09/01 11:44] (current) – external edit 127.0.0.1
Line 1: Line 1:
-$$ +===== 20.10 =====
-\begin{split}  +
--(1-x) ^ y + 1 +
-\end{split} +
-$$+
  
-aaa+**e**
  
 $$ $$
 \begin{split}  \begin{split} 
-&\measuredangle a \hspace{1 cm} \mbox{destination} \\ 
-&\measuredangle b \hspace{1 cm} \mbox{source} \\ 
-&0 \rightarrow 2\pi \\ 
-\end{split} 
-$$ 
  
-aaa+(x - x^4) ^ {-2} \\ 
 +-2 (x - x^4) ^ {-3} \cdot 1 - 4 x^3 \\ 
 +-2(x - x^4) ^ {-3}
  
-$$ 
-\begin{split}  
-&\alpha = a - b \\ 
-&\mbox{if} \hspace{.5 cm} \alpha < 0 \hspace{.5 cm} \alpha = \alpha + 2\pi 
 \end{split} \end{split}
 $$ $$
  
-schema cirkel maken+Behalve de kettingregel gebruik je ook de somregel!
  
-if right:+===== 20.13 =====
  
-$$ +**b**
-\begin{split}  +
- +
-\alpha = \alpha - \pi \\ +
-\pi \rightarrow 0 \\ +
- +
-\alpha = \pi - \alpha \\ +
-0 \rightarrow \pi \\ +
- +
-\end{split} +
-$$ +
- +
-aaa+
  
 $$ $$
 \begin{split}  \begin{split} 
  
-\frac {\alpha}{\pi} \\ +\cos(2x) \\ 
-\rightarrow 1 \\+\cos (2x) &+ x - \sin(2x) \cdot 2 \\ 
 +\cos (2x) &- 2x \sin(2x)
  
 \end{split} \end{split}
 $$ $$
  
-aaa +Behalve de productregel gebruik je hierbij ook de kettingregel!
- +
-$$ +
-\begin{split}  +
- +
--(1-x)^y+1 +
- +
-\end{split} +
-$$+
playground.1338451367.txt.gz · Last modified: 2022/09/01 11:36 (external edit)